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) Status from Applications Point of View
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Applications to Real-World Problems

- N-5S solution of full configuration was a big goal in the 80s

- Numerical procedures and computing hardware have been
advanced enabling simulation of complex configurations

® Some Examples of Successful Applications

- Components of liquid rocket engine

- Hydrodynamics (Submarines, propellers, ...)

- Ground vehicles (automobile aerodynamics, internal flows...)
Biofluid problems (artificial heart, lung, ...)
Some Earth Science problems

@ Current Challenges
- For integrated systems analysis, computing requirement is very large
=> Analysis part is still limited to low fidelity approach
- For high-fidelity analysis, especially involving unsteady flow, long turn-around
time is often a bottle neck = Acceleration of solution time is required

/A Major Drivers of Current Work

® To provide computational tools as an economical option for developing
future space transportation systems {i.e. RLV subsystems development)

Impact on component design = Rapid turn-around of high-fidelity analysis
Increase durability/safety = => Accurate quantification of flow
(i.e. prediction of low-induced vibration)

Impact on system performance = More complete systems analysis
using high-fidelity tools

® Target
Turbo-pump companent analysis = Entire sub-systems simulation

Computing requirement is large:
= The goal is to achieve 1000 times speed up over what was possible in 1992
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/4 Objectives
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® To enhance incompressible flow simulation capability for developing
aerospace vehicle components, especially, unsteady flow phenomena
associated with high speed turbo pump.

—
engines
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engine
phase II + redesign 1
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old design
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Penn State
artificial heart

new design
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/A INS3D - Incompressible N-S Solver
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** Parallel version : Based on INS3D-UP

*MPI and MLP parallel versions

e Structured, overset grid orientation

» Moving grid capability

e Based on method of artificial compressibility

» Both steady-state and time-accurate formulations

¢ 3 and 5'h-order flux difference splitting for convective terms

o Central differencing for viscous terms

+ One- and two-equations turbulence models

¢ Several linear solvers : GMRES, line-relaxation, LU-SGS,
point relaxation, ILU(O)..,..

sHISTORY
** 1982-1987 Original version of INS3D - Kwak, Chang
*x 1988 1999 Three different versions were devoped :
INS3D-UP / Rogers, Kiris, Kwak
INS3D-LU / Yoon, Kwak
INS3D-FS / Rosenfeld, Kiris, Kwak
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A Time Accurate Formulation
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¢ Time-integration scheme
Artificial Compressibility Formulation
- Introduce a pseudo-time level and artificial compressibility
- Iterate the equations in pseudo-time for each time step until
incompressibility condition is satisfied.
Pressure Projection Method
- Solve auxiliary velocity field first, then enforce

incompressibility condition by solving a Poisson equation
for pressure.

7/ Artificial Compressibility Method
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Time-Accurate Formulation
Discretize the time term in momentum equations using second-order
three-point backward-difference formula
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Introduce a pseudo-time level and artificial compressibility,
Iterate the equations in pseudo-time for each time step until
incompressibility condition is satisfied.
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/A Impulsively Started Flat Plate at 90° @
e Bossarct Canier

® Time History of Stagnation Point
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/a Current Challenges
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® Challenges where improvements are needed
- Time-integration scheme, convergence
- Moving grid system, zonal connectivity
- Parallel coding and scalability

® As the computing resources changed to parallel and distributed
platforms, computer science aspects become important such as
- Scalability (algorithmic & implementation)
- Portability, transparent coding etc.

® Computing resources
- "6rid" computing will provide new computing resources for
problem solving environment
- High-fidelity flow analysis is likely to be performed using “super
node” which is largely based on parallel architecture
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77 INS3D Parallelization
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/‘i Space Shuttle Main Engine Turbopump

/ ‘Ares fssaorch Coier —

Inlet Guide Vane (IGV)

*15 Blades

*Pitch, p = 24 degrees

*Blade Indet Angle (mean), B,;y, = 90 degrees
*Biade Exit Angle (mean), By;y , = 45 degrees

Clearance between IGV and Impeller, x = 0.12 Inches

Impeller

6+6+12 Unshrouded Design

*Pltch, p = 60 degrees

*Biade Inlet Angle (mean), B, = 23 degrees

*Blade Exit Angle (nun).p_“-“m

«Clearance between biade LE and Shroud, r = 0.0056 inches
*Clearance between blade TE and Shroud, x = 0.0%12 inches

Clearance between Impeller and Diffuser, r = 0.050 Inches

Diffuser

*23 Blades

*Plich, p = 15.652 degrees

*Blade Inlet Angle (mean), B, = 12 degrees
*Biade Exit Angle (mean), B ; = 43 degrees

y/ INS3D Parallelization
f Aoves Ressarch Coster — —
. ) _ TEST CASE : SSME Impeller
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/{ INS3D Parallelization
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/ OpenMP 60 zones / 19.2 Miilion points
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W) INS3D Parallelization
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%j‘ Paralle/ Implementation of INS3D @/
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RLV 2™ Gen Turbo pump
114 Zones / 34.3 M grid points

INS3D-MLP / 40 Groups

c &0 ”"”DK\ T 11 17| -m— 02000 no-pin [
§ w0 WNN [ || oeopin |
T wl} - f\z\*yb\\?.;””“"‘ —m— 03000 no-pin
& 0 | o\ |-o—-03000pin ||
"~ : ‘.\ ~ :
2 | AN RN
‘g 20 ‘ é\ % =~
o Y i
i N
E M
F U N m
100 [ —— - \ ‘
; R
— . R
0 100 200 300
7 Number of CPUs

Inlet Guide Vane

Impeller

Diffuser

18

Page 9



/Al Shuttle Upgrade SSME-rigl

Overset Grid System

Inlet Guide Vanes
15 Blades

23 Zones

6.5 M Points

Diffuser

23 Blades
31 Zones
8.6 M Points

2 Shuttle Upgrade SSME-rigl

grid for tip

clearance
Unshrouded Impeller Grid :
6 long blades / 6 medium blades /12 short blades hub
60 Zones / 19.2 Million Grid Points grid

Smallgst zone : 75K /Largest zone : 996K Overset connectivity : DCF (B. Meakin)
Less than 156 orphan points.
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Background
Grid

21

SSME-rigl/ Overset Grid System

Initial Start : flow at rest

Velocity vectors at first physical time step.
Impeller started at 10% actual rotational speed.
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ﬁ SSME-rigl / Initial start @
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FIRST TIME STEP / Impeller starts rotating impulsively at 10% ‘of design speed
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) SSME-rigl / Initial start
/ s hessarcd Coar —

TIME STEP 5/ Impeiler rotated 2.25-degrees at 10% of design speed
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%f‘ SSME-rigl / Initial start
7 —

VELOCITY COLORED BY VELOCITY MOGKITUDE

TIME STEP 5
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% SSME-rigl / Initial start @
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TIME STEP 7/ Impeller rotated 3-degrees at 30% of design speed

PRESSURE

\\\\\\

S

VELOCITY MAGNITUDE

Page 13



BWP RS b s -

/4 SSME-rigl / Initial start
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A Shuttle Upgrade SSME-rig!

- 34.3 Million Points

- 80O physical time steps in one
rotction.

*One physical time-step requires
less then 20 minutes wall time
with 80 CPU's on Origin 2000,
One complete rotation requires
one-week wall time with 80 CPUs.
*Currently I/0 is through one
processor. Timing will be improved
with parallel I/0 since time-
accurate computations are I/0
intensive. With futher
improvements several impeller
rotations can be completed in one
week.

28
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P/ Summary
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eUnsteady SSME-rigl start-up procedure from the pump at rest has been
initiated by using 34.3 Million grid points.

® Computational model for the SSME-rigl is completed. Moving boundary
capability is obtained by using DCF module in OVERFLOW-D.

@ MPI /Open MP hybrid parallel code has been benchmarked.

® MLP shared memory parallelism has been implemented in INS3D, and
benchmarked.

® MLP/OpenMP version requires 19-25% less computer time than
MPI/OpenMP version. Pin-to-node for MLP version is implemented. 40% less
computer time is required in the new version.

® Time-accurate features of methods designed for 3-D applications are
evaluated. An efficient solution procedure is obtained.

®Work currently underway
e®Unsteady SSME-rigl simulations by using 34.3 Million grid points.
® Experimental measurements at NASA-MSFC.
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